Epilepsy and brain inflammation.

نویسندگان

  • Annamaria Vezzani
  • Eleonora Aronica
  • Andrey Mazarati
  • Quentin J Pittman
چکیده

During the last decade, experimental research has demonstrated a prominent role of glial cells, activated in brain by various injuries, in the mechanisms of seizure precipitation and recurrence. In particular, alterations in the phenotype and function of activated astrocytes and microglial cells have been described in experimental and human epileptic tissue, including modifications in potassium and water channels, alterations of glutamine/glutamate cycle, changes in glutamate receptor expression and transporters, release of neuromodulatory molecules (e.g. gliotransmitters, neurotrophic factors), and induction of molecules involved in inflammatory processes (e.g. cytokines, chemokines, prostaglandins, complement factors, cell adhesion molecules) (Seifert et al., 2006; Vezzani et al., 2011; Wetherington et al., 2008). In particular, brain injury or proconvulsant events can activate microglia and astrocytes to release a number of proinflammatory mediators, thus initiating a cascade of inflammatory processes in brain tissue. Proinflammatory molecules can alter neuronal excitability and affect the physiological functions of glia by paracrine or autocrine actions, thus perturbing the glioneuronal communications. In experimental models, these changes contribute to decreasing the threshold to seizures and may compromise neuronal survival (Riazi et al., 2010; Vezzani et al., 2008). In this context, understanding which are the soluble mediators and the molecular mechanisms crucially involved in glio-neuronal interactions is instrumental to shed light on how brain inflammation may contribute to neuronal hyperexcitability in epilepsy. This review will report the clinical observations in drug-resistant human epilepsies and the experimental findings in adult and immature rodents linking brain inflammation to the epileptic process in a causal and reciprocal manner. By confronting the clinical evidence with the experimental findings, we will discuss the role of specific soluble inflammatory mediators in the etiopathogenesis of seizures, reporting evidence for both their acute and long term effects on seizure threshold. The possible contribution of these mediators to co-morbidities often described in epilepsy patients will be also discussed. Finally, we will report on the anti-inflammatory treatments with anticonvulsant actions in experimental models highlighting possible therapeutic options for treating drug-resistant seizures and for prevention of epileptogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 69: Effect of Serum Zinc Element in Epilepsy Paitaints

Epilepsy is a disorder categorized by recurrent seizures and leads to changes in neuronal death and neurogenesis. Recently the search for new targets in the therapy of epilepsy has focused on brain inflammation because brain inflammation and the associate blood brain barrier damage appears to be basic part of epilepsy pathophysiology-erythropoietin (EPO) regulates biological processes counting ...

متن کامل

MicroRNAs as Immune Regulators of Inflammation in Children with Epilepsy

Epilepsy is a chronic clinical syndrome of brain function which is caused by abnormal discharge of neurons. MicroRNAs (MiRNAs) are small noncoding RNAs which act post transcriptionally to regulate negatively protein levels. They affect neuroinflammatory signaling, glial and neuronal structure and function, neurogenesis, cell death, and other processes linked to epileptogenesis. The aim of this ...

متن کامل

P 154: The Role of Inflammation in the Seizure Occurrence

Most common hypotheses of seizure initiation are increased neural excitation, decreased inhibition or both. But, the conditions that lead to these activation states not to be clear yet. Recent studies challenge traditional concepts and indicate new evidence that a key epileptogenic process may actually begin in the blood vessel. Seizures could be initiate by a variety of insults to the brain, s...

متن کامل

P 89: Reduction of Neuroinflammation in Epilepsy by Using Stem Cells Derived Astrocytes

Epilepsy is neurological disorders that afflict many people around the world with a higher prevalence rate in children and in low income countries. Temporal lobe epilepsy (TLE) is result from hippocampal sclerosis is a neurological disorder with difficult treatment. Stem cells can transform into any type of cells such as glial cells, consequently stem cells can use for medical treatment. Stem c...

متن کامل

O 2: Anti-Inflammatory Approach to Epilepsy Treatment

Epilepsy is one of the most common neurologic diseases around the world and more significantly in Iran (0.4-1 % worldwide and 5% in Iran). Almost one-third of these patients suffer from treatment-resistant epilepsy, which reduces their quality of life by recurring epileptic onsets. There are different approaches for the treatment of both treatment-resistant and treatment-nonresistant epilepsy, ...

متن کامل

P 55: Sleep Disturbance and Epilepsy: an Inflammatory Pathway

Sleep plays a vital role in regulating physiological mechanisms in the human body. Nowadays, by the change of lifestyle and as a consequence of longer work hours and increased accessibility to media, sleep disturbance becomes a common problem in modern society. Many studies demonstrated that sleep disturbance triggers a systemic low-grade inflammation by increasing the level of several cytokine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental neurology

دوره 244  شماره 

صفحات  -

تاریخ انتشار 2013